MEETING REPORT

Sensitization in Transplantation: Assessment of Risk (STAR) 2017 Working Group Meeting Report

Anat R. Tambur1,* | Patricia Campbell2 | Frans H. Claas3 | Sandy Feng4 |
Howard M. Gebel5 | Annette M. Jackson6 | Roslyn B. Mannon7 | Elaine F. Reed8 |
Kathryn Tinckam9 | Medhat Askar10 | Anil Chandraker11 | Patricia P. Chang12 |
Monica Colvin13 | Anthony-Jake Demetr14 | Joshua M. Diamond15 | Anne I. Dipchand9 |
Robert L. Fai16 | Mandy L. Ford5 | John Friedewald1 | Ronald G. Gill17 |
Denis Glotz18 | Hilary Goldberg11 | Ramsey Hachem19 | Stuart Knechtle20 |
Jon Kobashigawa21 | Deborah J. Levine22 | Joshua Levitsky1 | Michael Mengel2 |
Edgar Milford11 | Kenneth A. Newel5 | Jacqueline G. O’Leary23 | Scott Palmer20 |
Parmjeet Randhawa14 | John Smith24 | Laurie Snyder20 | Randall C. Starling16 |
Stuart Sweet19 | Timucin Taner25 | Craig J. Taylor26 | Steve Woodle27 |
Adriana Zeevi14 | Peter Nickerson28

1Northwestern University, Chicago, Illinois
2University of Alberta, Edmonton, AB, Canada
3Leiden University Medical Center, Leiden, Netherlands
4UCSF Medical Center, San Francisco, California
5Emory University School of Medicine, Atlanta, Georgia
6Johns Hopkins University, Baltimore, Maryland
7UAB School of Medicine, Birmingham, Alabama
8UCLA Pathology & Laboratory Medicine, Los Angeles, California
9University of Toronto, Toronto, ON, Canada
10Baylor University Medical Center, Dallas, Texas
11Brigham and Women’s Hospital, Boston, Massachusetts
12University of North Carolina, Chapel Hill, North Carolina
13University of Michigan, Ann Arbor, Michigan
14University of Pittsburg Medical Center, Pittsburgh, Pennsylvania
15University of Pennsylvania, Philadelphia, Pennsylvania
16Cleveland Clinic, Cleveland, Ohio
17University of Colorado, Denver, Colorado
18Hopital Saint Louis, Paris, France
19Washington University School of Medicine, St. Louis, Missouri
20Duke University School of Medicine, Durham, North Carolina
21Cedars-Sinai Medical Center, Los Angeles, California
22University of Texas, San Antonio, Texas
23Dallas VA Medical Center, Dallas, Texas

Abbreviations: ABMR, antibody-mediated rejection; CDR, complementarity determining region; CNI, calcineurin inhibitor; cPRA, calculated PRA; DSA, donor-specific antibody; MFI, mean fluorescent intensity; STAR, Sensitization in Transplantation: Assessment of Risk; TCMR, T cell-mediated rejection.
The presence of preexisting (memory) or de novo donor-specific HLA antibodies (DSAs) is a known barrier to successful long-term organ transplantation. Yet, despite the fact that laboratory tools and our understanding of histocompatibility have advanced significantly in recent years, the criteria to define presence of a DSA and assign a level of risk for a given DSA vary markedly between centers. A collaborative effort between the American Society for Histocompatibility and Immunogenetics and the American Society of Transplantation provided the logistical support for generating a dedicated multidisciplinary working group, which included experts in histocompatibility as well as kidney, liver, heart, and lung transplantation. The goals were to perform a critical review of biologically driven, state-of-the-art, clinical diagnostics literature and to provide clinical practice recommendations based on expert assessment of quality and strength of evidence. The results of the Sensitization in Transplantation: Assessment of Risk (STAR) meeting are summarized here, providing recommendations on the definition and utilization of HLA diagnostic testing, and a framework for clinical assessment of risk for a memory or a primary alloimmune response. The definitions, recommendations, risk framework, and highlighted gaps in knowledge are intended to spur research that will inform the next STAR Working Group meeting in 2019.

KEYWORDS
alloantibody, clinical research/practice, clinical trial design, guidelines, histocompatibility, immunobiology, monitoring: immune, sensitization

1 | INTRODUCTION

The presence of preexisting (memory) or de novo donor-specific HLA antibodies (DSAs) is a known barrier to successful long-term organ transplant. Yet, the criteria to define and assign a level of risk for a given DSA vary markedly between centers, despite the fact that available laboratory tools and our understanding of histocompatibility have advanced significantly in recent years. Unfortunately, much of our current clinical practice is based on transplant survival studies that were designed in the time of older technologies, confounding our ability to interpret and implement those results into current clinical practice or design new clinical studies. Consequently, there is a need to update guidelines for antibody testing and patient risk assessment to enable clinical programs to design personalized immunosuppression protocols.

A collaborative effort between the American Society for Histocompatibility and Immunogenetics and the American Society of Transplantation provided the logistical support for generating a dedicated multidisciplinary working group that included experts in histocompatibility as well as kidney, liver, heart, and lung transplantation. The goals were to perform a critical review of biologically driven, state-of-the-art, clinical diagnostics literature where comprehensive account of methodology was provided and to provide clinical practice recommendations based on expert assessment of the strength of evidence (Figure 1). A complete list of publications that were reviewed by the working group is provided in Table S1.

Participants were divided into smaller discussion groups based on their clinical expertise and were tasked with critical (albeit not systematic) review of the literature. The literature search focused on clinical diagnostics of circulating HLA antibodies. For the purposes of the first Sensitization in Transplantation: Assessment of Risk (STAR) Working Group report, non-HLA antibodies were considered out of scope. Moreover, histologic diagnostics were not considered as this falls within the purview of the Banff Foundation for Allograft Pathology. To supplement the literature review, a survey was conducted of both clinical and laboratory programs supporting organ transplant.
Subgroups were charged with providing educational primers on (1) the definition and use of HLA diagnostic testing and (2) the biological basis of immunologic naiveté versus memory. Organ-specific groups were tasked to establish criteria to assess patients’ risk in the context of a naïve-versus-memory immunologic response and to use this distinction to inform HLA diagnostic use pretransplant and posttransplant. Initial recommendations were formulated, followed by face-to-face deliberations of the full group on February 26, 2017, at the Arizona Biltmore Hotel in Phoenix, Arizona. Importantly, subgroups were asked to identify key knowledge gaps that, if addressed, could significantly advance clinical practice. Representatives from the US Food and Drug Administration (FDA), National Institutes of Health (NIH), and the United Network for Organ Sharing (UNOS) attended as observing stakeholders. It should be noted that the STAR Working Group refrained from specific recommendations for therapeutic protocols for 2 major reasons: (1) high-quality evidence is lacking to support one approach over another, and (2) for a given patient, the risk of memory or de novo alloimmunity, and the requirements for risk mitigation therapies, varies significantly based on the target organ (most notably in the case of liver transplants).

2 | DEFINING THE PRESENCE/ABSENCE OF AN HLA ANTIBODY

Solid-phase single-antigen bead (SAB) technology revolutionized HLA diagnostics in the past 15 years by detecting very low-level antibodies in patients’ sera with the use of a mean fluorescent intensity (MFI) readout. There has been much discussion as to the ability to set an MFI cut-off for determining the presence or absence of an HLA antibody. An objective difficulty lies in the relatively high coefficient of variation (CV) for the assay – a point documented clearly in the Clinical Trials in Organ Transplantation/American Recovery and Reinvestment–funded HLA antibody standardization study. While emphasizing that SAB MFI cannot be used as a quantitative assay, the study did determine that "MFI positive cutoffs ranging from values 1000-1500 yielded a high level of agreement (>90%) in antigen specificity assignment. The MFI cut-off of 1400 units was found to optimize the correct classification rates for both class I and II kits" (see the caveats presented later). The ability to set such a cut-off value, to define the presence or absence of an HLA antibody, is critical to improving the quality of clinical trials in the field and allowing for comparability between studies, a point specifically emphasized by the federal agency observers during the STAR Working Group meeting.

3 | TERMINOLOGY

The survey results, combined with reviews of the relevant literature, made it evident that there is confusion with terminology in the community. It was agreed there must be clarity and consistent use of terms to allow comparison between research studies, as well as clinical outcomes, and to facilitate improvement in practice guidelines and health system policy.

Specifically, the following major terminology and misuse of terms were identified:

1. Mean fluorescence intensity (MFI) ≠ titer. A high MFI value is often referred to as a high titer antibody but only rarely indicates the actual testing of serum by dilution studies. Some antibodies with relatively high MFI values may dilute rather quickly and therefore do not qualify as high titer antibodies. Moreover, HLA antibody SAB MFI assessment is not licensed by the FDA as a quantitative assay. Determination of antibody titer is important as it is likely to have implications on the injurious qualities of that antibody and a reference point for determining efficacy of desensitization therapy.

2. % Calculated PRA (cPRA) ≠ immunologically naïve. The fact that a patient has no detectable HLA antibodies does not infer that he or she...
is immunologically naïve with regard to HLA antigens. It is entirely possible that a nontransplanted patient has been exposed and responded to an allo-HLA antigen through pregnancy or transfusion yet does not have a detectable HLA antibody in the current sera.

3. Acceptable HLA mismatch ≠ immunologically naïve. The term “unacceptable HLA antigens” is used in the context of listing a patient’s HLA antibody specificities in UNet to avoid donor offers that the clinical program is not willing to cross due to the risk associated with a memory response. Not uncommonly, it is assumed that the remaining “acceptable antigens” infers that there is no immune memory or that there is no HLA antibody specific for the “acceptable antigen.” This is entirely a false premise – in many instances just because a DSA MFI is below the program’s “risk threshold” does not mean the antibody does not exist and that the recipient is immunologically naïve to that mismatch and therefore at no or minimal risk.

4. Pretransplant DSA titer ≠ posttransplant memory response. It is often inferred that the amount of antibody pretransplant can be used to predict the risk and intensity of the posttransplant recall response. This is completely without basis – at present, we have no tools to determine if a low titer antibody will remain low or rapidly increase in titer.

5. Complement (C’) binding activity in vitro ≠ in vivo C’ binding activity. While certain antibody subclasses do have higher affinity for C1q binding, complement activation is largely a consequence of a high concentration of DSAs.6,7 Indeed, it has been shown that activation of C1q requires the presence of 6 antibody molecules in close proximity.8 Consequently, C1q-positive DSAs in the serum, similar to IgG DSAs in the serum, should be considered in the context of gradations of the antibody’s levels rather than as yes/no responses. Moreover, patients with a C1q-negative DSA in the serum can frequently have C4d-positive antibody-mediated rejection (ABMR) in the tissue indicating that a negative C1q assay does not infer the DSAs are incapable of activating complement in vivo.9 Therefore, while emerging data suggest C1q-positive DSAs may indicate a potential risk for adverse graft outcomes, more research in this regard is required to clearly demonstrate its distinct utility.10

6. Eplet ≠ epitope. A commonly misused term is “epitope” instead of “eplet.” “Eplete” refers to the complete contact area between an antibody and an antigen. “Eplet” is a portion of the epitope that in theory forms the third CDR of the immunoglobulin variable heavy chain (CDR H3) antibody binding site, defined purely based on amino acid mismatching between donor and recipient (i.e., represents the potential functional epitope of the antibody determining specificity, whereas the entire structural epitope, composed of the binding by all 6 CDRs, determines antibody avidity).11,12 Currently, only a subset of the theoretical eplets have been proved to be antigenic.

4 | QUALITY AND COMPREHENSIVE USE OF HLA DIAGNOSTICS

It was identified that the quality and comprehensive use of HLA diagnostics vary greatly in the published literature. This is in part related to the retrospective nature of many reports that examine longitudinal outcomes in cohorts before 2010, after which UNOS started to mandate more comprehensive HLA loci typing as well as solid phase testing for HLA antibodies. Key gaps remain that need to be considered in interpreting the literature:

1. Lack of donor HLA loci typing does not equal absence of a DSA directed to that HLA loci. Presence of HLA-DSAs is (at times) determined in the absence of comprehensive donor HLA typing. The corollary is that absence of DSAs for a given loci cannot be rigorously determined if the donor typing at that loci is not available.

2. Lack of high-resolution typing cannot be substituted by statistical assumptions of the missing data. Given the complexity of HLA genetics, and its polymorphism in different ethnic groups, imputation of missing HLA data may introduce substantial bias and may lead to false conclusions, especially with regards to HLA class II antigens. Currently available frequency tables may support clinical consultation for individual patient management, but in the vast majority of the cases, this is not sufficient for clinical trials adjusting for the confounding effect of HLA mismatching on outcomes.

3. Failure to routinely use methods to rule out serum inhibitors in HLA antibody assays leads to underrecognition of DSA. Inhibitors, such as endogenous C’ activation in vitro, can block the ability of secondary antibodies to appropriately recognize DSA binding to the SAB, producing low MFI readings and an inaccurate interpretation that a DSA is absent or at a low level.4,13

4. Failure to consider shared epitopes between solid phase beads leads to underrecognition of DSA. While the aforementioned MFI cut-off between 1000 and 1500 units is generally optimal for recognition of a DSA specificity, it is nonetheless a guideline and not an absolute. When a number of beads share the same DSA epitope, it is entirely possible to have a DSA with the MFI <1000 on all beads. Knowledge of shared epitopes is therefore essential for proper interpretation of SAB assays.

To improve “precision” and “personalized” medicine, the consensus was that comprehensive HLA diagnostics must become the standard of care and most certainly have to be imbedded in clinical trial research going forward. The STAR Working Group recommendations for HLA antigen typing and antibody testing are summarized in Figure 2.

5 | IMMUNE MEMORY

Immunologic memory is the ability of the immune system to respond rapidly and with vigor on reencounter with the same antigen. Modern immunology now demonstrates that infection or vaccination results in the generation of long-lived subsets of phenotypically, functionally, and metabolically distinct B and T cells. Memory T and B cells are the progeny of antigen-specific naïve cells that have been clonally expanded in the course of an immune response and that survive even after antigen has been eliminated. They reside in specific anatomic locations, have distinct phenotypes, and are uniquely poised to confer immediate protection and
generate secondary responses that are more rapid and of higher magnitude than primary responses against the same antigen. In transplant recipients, donor-reactive memory T and B cells can arise from prior exposure to foreign HLA via prior blood transfusion, transplantation, or pregnancy. Additionally, heterologous immune mechanisms, whereby T cell responses elicited by infectious pathogens are cross-reactive with donor antigens, provide another potential source of alloreactive memory T cells in transplant recipients. Given that immune memory is a known barrier to graft survival, although its impact can vary by organ type, the STAR Working Group recommendations are aimed at detecting and evaluating the immune status of the patient. That said, it is important to recognize, at least as currently measured, that the in vitro assessment of immune memory has severe limitations and gaps that fail to incorporate aspects of well-described immunobiology.

6 | CLINICAL MEASUREMENT OF IMMUNE MEMORY

Currently, classification of patients as "sensitized" or " naïve" is strongly influenced by the most recent circulating HLA antibody test – percent PRA and specific HLA antibody identification. While this information is beneficial to predict lymphocyte crossmatch results, it does not provide complete and accurate information regarding the patient’s sensitization history and his or her likelihood to have a recall memory response against the transplanted organ. Specifically, patients with 0% PRA in a current serum sample may have had historic HLA antibodies after a sensitizing event that may or may not be apparent to the clinician based on availability of sera and frequency and length of historic HLA antibody testing. Moreover, recent literature demonstrates that HLA specific B cell memory may be present even in the absence of detectable HLA antibodies. The meeting highlighted that our current "memory assays" are limited to detecting circulating HLA antibodies at a specific time-point (ie, flow PRA and the SAB assays) and thus focus on only a small portion of the memory alloimmune response. Clearly, we are only beginning to scratch the surface of detecting donor-specific B and T cell memory (eg, interferon-γ enzyme-linked immunosorbent spot [ELISpot] assay) pretransplant. The STAR Working Group developed definitions for alloimmune memory (Figure 3) and recommendations to evaluate a patient’s potential for alloimmune memory (Figure 4).
It is difficult to document that a patient is truly "naïve" for a given mismatched alloantigen; rather, it is generally expressed in terms of relative risk for a memory response to that alloantigen on the basis of patient history and HLA antibody testing (see earlier). Confounding the definition of "naïve," the STAR Working Group found the transplant literature inconsistent in comprehensively assessing the presence of pretransplant alloimmune memory, a requirement if concluding that a posttransplant alloimmune response is de novo. Key questions thus arise: Can one be assured an observed alloimmune response is de novo versus memory? Does posttransplant distinction between memory versus primary alloimmunity have clinical implications? Can one assess an individual’s risk for a primary immune response to a given mismatched alloantigen?

The confidence in assigning an alloimmune response as de novo versus memory is not difficult when comprehensive state-of-the-art assessment fails to detect DSA pretransplant and T cell–mediated rejection (TCMR) or ABMR occurs for the first time late (ie, >6 months) posttransplant. The challenge resides when these requirements are not met. Moreover, at least 4 other parameters further confound classification; (1) immunogenicity of a given mismatched alloantigen, (2) immunogenicity of a given transplanted organ (eg, kidney ≫ liver), (3) immune responsiveness of the individual (eg, younger ≫ older), and (4) the adequacy of immunosuppression given parameters 1 to 3. Emerging literature is bringing all of these into focus. For example, recent studies excluding pretransplant DSAs using state-of-the-art HLA diagnostics where target tacrolimus trough levels were between 8 and 12 ng/mL in the first 3 months and 7 to 12 ng/mL for the first year did not report a new DSA on serial posttransplant screening before 6 months. In comparison, if the target tacrolimus trough level was between 6 and 9 ng/mL during the first 3 months, a new DSA incidence of 7.4% at 1 month was observed. Given this complexity, the STAR Working Group concluded that in general, a new DSA observed in the first 2 weeks posttransplant likely represents a memory response. Between 2 weeks and 3 months, as immunosuppression is weaned and cells are repopulated from depletion therapy (when used); then both memory and de novo alloimmunity may emerge. After 3 months, the later the onset of a new DSA, the more likely that it is related to de novo alloimmunity. Clearly,
Table 1

HLA diagnostic approach to assign a patient’s risk for memory or naïve alloimmune response

<table>
<thead>
<tr>
<th>CDC crossmatch</th>
<th>Flow crossmatch</th>
<th>Single antigen bead</th>
<th>History of sensitization</th>
<th>HLA molecular MM</th>
<th>HLA identical</th>
<th>Immune risk assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSA positive</td>
<td>DSA positive</td>
<td>DSA positive</td>
<td></td>
<td></td>
<td></td>
<td>Active memory and at risk for hyperacute rejection</td>
</tr>
<tr>
<td>Negative</td>
<td>DSA positive</td>
<td>DSA positive</td>
<td></td>
<td></td>
<td></td>
<td>Active memory and at risk for ABMR and TCMR</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>DSA positive</td>
<td></td>
<td></td>
<td></td>
<td>Active memory and at risk for ABMR and TCMR</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>Pregnancy or prior transplant with repeat MM</td>
<td></td>
<td></td>
<td>At risk for latent memory with a recall B and T cell response</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>cPRA with unknown repeat MM</td>
<td></td>
<td></td>
<td>Potential risk for latent memory with a recall B and T cell response</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>No</td>
<td>High</td>
<td></td>
<td>Increased risk for de novo alloimmune response</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>No</td>
<td>Low</td>
<td></td>
<td>Baseline risk for de novo alloimmune response</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>No</td>
<td>0</td>
<td>Yes</td>
<td>Low risk for de novo alloimmune response</td>
</tr>
</tbody>
</table>

MM,Mismatch; DSA, donor-specific antibody; ABMR, antibody-mediated rejection; TCMR, T cell-mediated rejection.
these are broad guidelines and represent an area for further study and refinement to determine the relative contribution of memory and primary alloimmunity early (ie, <6 months) posttransplant. However, the distinction may prove very relevant as literature is reporting differences in outcomes related to memory versus de novo DSA-associated ABMR.24,25 Similarly, whether treatment protocols are equally effective for both memory and primary alloimmunity requires further research.

Literature rigorously defining an alloimmune response as de novo has reported that the level of HLA whole antigen mismatch does not accurately reflect the immunogenic risk of a given donor to elicit a de novo alloresponse.26 Indeed, for a given level of HLA serologic antigen mismatch, at the molecular level, the donor and recipient of a donor-recipient pair may be very similar to one another or quite disparate. New computational tools are emerging that allow accurate quantitation at the HLA molecular mismatch level (eg, in terms of amino acid polymorphisms or differences in electrostatic charge) for any donor-recipient combination, which may allow more accurate assessment of a patient’s risk for a de novo alloimmune response posttransplant.27,28 While the optimal computational methods and threshold values to assign risk are yet to be determined and validated, especially in diverse genetic backgrounds and across all organ transplants, the STAR Working Group saw this area as one holding great promise for the field requiring immediate investment. It may allow for personalized immunosuppression and, in particular, minimization to avoid unwanted side effects.

8 | ALLOIMMUNE RISK ASSESSMENT

Based on the aforementioned discussion of the biology of memory and primary alloimmune responses, the STAR Working Group constructed a general framework for assigning risk independently for memory and primary alloimmune responses at the time of transplant. Summarized in Table 1, the framework proposes that risk can be broadly assigned by using currently available state-of-the-art HLA diagnostics. The novel aspect of this framework is the assignment of 2 types of risk (eg, 1 for memory and 1 for de novo alloimmunity). While the de novo risk assignment on the basis of molecular HLA mismatch is yet to be optimized, the STAR Working Group saw the creation of the framework as critical to foster research in the field of HLA immunogenicity and to ultimately define immunodominant HLA epitopes driving TCMR and ABMR. The use of the framework is seen as allowing individual transplant programs to first and foremost define the memory and primary alloimmune risks present for a given patient and organ transplant type and then to either avoid the risk or develop tailored induction and maintenance immunosuppressive therapies to address the risk. As stated at the outset, protocols vary widely across clinical programs, and the literature does not currently have high-quality evidence to recommend one protocol over another. It is hoped that this framework will drive clinical research to address this gap.

9 | ORGAN-SPECIFIC HLA DIAGNOSTIC ASSESSMENT GUIDELINES

There was broad consensus among the organ-specific groups for the recommendations contained in Figures 1 to 3. However, immediate pretransplant evaluation and posttransplant assessment varied among the organ-specific groups, and these are reflected in Table 2, mainly concerning the grade and strength of the recommendations. Of note, while there was general agreement in regard to the need for posttransplant DSA monitoring, especially in the context of memory, the lack of high-quality evidence precludes the STAR Working Group from making any specific recommendations as to the frequency and duration—at this point, it should be a program-specific decision.

10 | KEY KNOWLEDGE GAPS

The STAR Working Group identified general as well as organ-specific gaps in the current knowledge that should be addressed within the following broad categories:

1. Risk Stratification for Memory and Primary Alloimmune Responses

The literature review, as well as the survey, elucidated the lack of integration between HLA antibody information and current knowledge of immunobiological processes as a tool to guide clinical practice. In general, HLA antibodies are evaluated as present/absent rather than evaluating the patient’s immune-sensitization status; the type of immunization (ie, pregnancy vs transfusion vs prior transplant); strength of antibodies; and trajectory of antibody responses. While this is a gap in education, a more fundamental deficit relates to the absence of tests to detect the potential presence of immune memory in the absence of circulating HLA antibodies. Development of robust high-throughput tools to identify and quantify T cell and B cell memory is required for pretransplant risk assessment and tailoring of immunosuppression protocols pretransplant and posttransplant.

Improved matching algorithms, beyond pretransplant crossmatch and the current HLA-A, -B, -DR matching scheme, are required. This will help minimize the risk of de novo HLA antibodies posttransplant and lead to improved graft survival. Similarly, research to define the effects of different immunosuppression regimens on the likelihood of developing de novo HLA DSA and/or TCMR should lead to more individualized treatment protocols.

2. Desensitization/crossing HLA antibody barriers

Multiple desensitization protocols are currently available.29-32 However, it is not clear how to determine the optimal patient population who may respond to each of these approaches, or to predict whether the response will be sufficient to bridge those patients to transplantation, or if a specific protocol is even required in the case of liver transplants. Assays to monitor the efficacy of these treatments
are lacking, and thus the ability to compare between the different protocols is limited. Moreover, the effectiveness of desensitization in targeting memory (especially B cells) is completely unknown. It is currently not clear whether some DSA attributes are more detrimental than others and what the relationships are between these characteristics (eg, complement binding antibodies, titers, antibody subclasses, the dynamics of isotype switching over time, the impact of FcγR genotypes, etc.).

3. Posttransplant monitoring

Determining the usefulness of regular screening for DSA, the frequency, and the associated cost-benefit is required for both memory and de novo alloimmune monitoring in all organs. While the epidemiology of memory and de novo alloimmunity and their natural history are becoming clearer, especially for kidneys, there is a need for their further evaluation in all organs, especially in the context of nonwhite genetics, to determine risk factors and rates of progression—critical for the future design of prevention and intervention trials. The use of HLA diagnostics in monitoring response to treatment is also in its infancy. As more therapeutic agents become available, defining a noninvasive tool (eg, DSA attributes, other novel assays) that correlates with effective therapy will be required.

CALL FOR IMMEDIATE ACTION

Two key themes that emerged from the Working Group are the following. First, currently, there are no minimal guidelines for the details of information required for publications related to HLA antibodies in the context of solid organ transplantation. The lack of sufficient details prohibits in-depth understanding of the differences and similarities between studies and results in confusion. This can be resolved by requiring minimal criteria for publication. Second, there is a pressing need to create centralized registries for highly sensitized patients and HLA-incompatible transplants. This is especially true for those transplanted with living donors in kidney paired exchange programs as well as with deceased donors when prioritized by the kidney allocation system; Registries should also be created for patients who experience ABMR posttransplant. The registries should collect HLA antibody and typing information in a streamlined fashion and house data defining treatment protocols and transplant

TABLE 2 Organ-specific recommendations

<table>
<thead>
<tr>
<th>Peri-Transplant Evaluation (Cross-match)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A Virtual and/or prospective crossmatch between Donor and Recipient should be performed prior to allocation ideally and at minimum prior to transplant</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
</tr>
<tr>
<td>Avoiding HLA antibody is the preferred strategy</td>
<td>2C</td>
<td>2C</td>
<td>2C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-Transplant Assessment of HLA Antibody</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable Graft: Memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early in patients with active memory or at risk for latent memory</td>
<td>2C</td>
<td>2B</td>
<td>1A*</td>
</tr>
<tr>
<td>Frequency depends on number and strength of pre-1x DSA</td>
<td>2C</td>
<td>2C</td>
<td>1A</td>
</tr>
<tr>
<td>Not routine in liver</td>
<td></td>
<td></td>
<td>1D</td>
</tr>
<tr>
<td>Guided by non-liver organ in combined liver - other organ</td>
<td></td>
<td></td>
<td>1A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stable Graft: Naive</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>At Intervals post-transplant</td>
<td>2C</td>
<td>2B</td>
<td>1A**</td>
</tr>
<tr>
<td>After modifications of immunosuppression or CNI avoidance protocols</td>
<td>EO</td>
<td>EO</td>
<td>1A***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transplant Dysfunction: Memory and Naive</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As part of investigation of acute and chronic graft dysfunction</td>
<td>1B</td>
<td>1B</td>
<td>1B</td>
</tr>
<tr>
<td>If there are histologic features of graft injury</td>
<td>1B</td>
<td>1B</td>
<td>1B</td>
</tr>
<tr>
<td>In liver, test patients w/ steroid resistant rejection and chronic rejection or those w/ clinical or histologic features of acute or chronic AMR</td>
<td></td>
<td></td>
<td>EO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ancillary HLA Diagnostic Assays</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Complement or isotype assays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May be done but the role must be determined at the center level</td>
<td>2C</td>
<td>2C</td>
<td></td>
</tr>
</tbody>
</table>
outcome in a constant and consistent manner. These data registries could also be mined for epidemiologic information (eg, race-specific outcome).

ACKNOWLEDGMENTS

Logistics: Victoria Convers, Anthony Celenza (Association Headquarters).

STAR 2017 STEERING COMMITTEE

Anat Tambur (co-chair), Peter Nickerson (co-chair), Frans Claas, Ron Gill, Denis Glotz, John Kobashigawa, Michael Mengel, Edgar Milford, Parmjeet Randhawa, and Steve Woodle.

STAR 2017 SUBGROUP LEADS

Patricia Campbell, Frans H. Claas, Sandy Feng, Howard M. Gebel, Annette M. Jackson, Rosalyn B. Mannan, Elaine F. Reed, and Kathryn Tinckam.

STAR 2017 MEETING FACULTY

Medhat Askar, Patricia Chang, Monica Colvin, Jake Demetris, Joshua Diamond, Anne Dipchand, Robert Fairchild, Mandy Ford, John Friedewald, Hilary Goldberg, Ramsey Hachem, Stuart Knechtle, Debora Levine, Josh Levitsky, Ken Newell, Jaqueline O’Leary, Scott Palmer, John Smith, Laurie Snyder, Randy Starling, Stuart Sweet, Timucin Taner, Craig Taylor, and Adriana Zeevi.

STAR 2017 AGENCY OBSERVERS

Renata Albrecht (US Food and Drug Administration), Nancy Bridges (National Institutes of Health, National Institute of Allergy and Infectious Diseases), and Mark Aeder (United Network for Organ Sharing).

DISCLOSURE

The authors of this manuscript have conflicts of interest to disclose as described by the American Journal of Transplantation. AMJ and PN have received an honorarium from One Lambda ThermoFisher. The other authors have no conflicts of interest to disclose.

ORCID

Kathryn Tinckam https://orcid.org/0000-0002-6638-2887
John Friedewald https://orcid.org/0000-0002-9344-9928
Stuart Sweet https://orcid.org/0000-0002-0638-2586

REFERENCE

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.